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Effect of noise on a particle moving in a periodic potential
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It is shown that for systems with a periodic potential, the flux is very sensitive to the strength of additive
or/and multiplicative noise. Multiplicative noise becomes important when its strength is of the order of the
barrier height, and it provides a means of additional control of the (flakage-current characteristics for a
Josephson junctignin addition to a numerical analysis, the cases of weak and strong additive noise have also
been considered analytically.
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For a particle in a periodical potential, described by thethe solution(2) has been demonstrated for the Josephson

equation junction [1]. It turns out that the threshold effe¢®) is
blurred and(x)#0 appears for alh,#0. Much less effort
dx . has been expended in studying the influence of only multi-
a=a—b sinx, @) plicative noisexn(t) and in combination with additive noise.

This is the aim of this note.
overdamped Brownian motion is a generic form suitable for The Stratonovich interpretation of the Fokker-Planck
describing many different physical phenomena, such as thequation for the probability distribution functidm(x,t) cor-
Josephson junctioft], charge density wavd®], motion of  responding to Eqg1)—(3) has the following forn{10]:
fluxons in superconductor3,4], and the ring-laser gyro-

scope[5]. In these various cases,is the phase across the JP .
junction, position of the charge density wave, coordinate of ot 5[a0—(b0+ D cosx)sinx]P
fluxons, phase-angle difference between the clockwise and
the counterclockwise running wave in a ring-laser gyro- 92 .
scope, whilea is the bias current, rotation rate and potentials, + _2[(D1+ Dy sir? x)]P
. s . X
respectively. Other applications of E¢L) include, among
others, the phase looking in electric circuf®], chemical IW
reactiong 7], oscillations in the visual corteh8], penetration == (4)

of biological channels by iong], and motion of defects in

convective fluidg9]. _ where W is the flux proportional to(x), namely, (x)
The solution of Eq.(1) can be easily found. The most _— 5\

significant property of this solution is the threshold behavior g, the stationary caséP/dt=0, one findg11]
of the flux, dx/dt=x,

dP
- — 2
% 1JT. {0 for a<b o ax T TOOP=WQ%(x), (5)
X)=lim=| xdt= 2
Tl Jo a’—b? for a>b. where
The content of this equation can be easily u'nderstood in ag— by Sinx— D, SINXCOSX
terms of a pendulum. When the external torgues small, r'(x)= : :
the pendulum can perform only small oscillations around its (D1+D,sinfx)
equilibrium point, while for sufficiently large, the pendu- _
lum is able to execute complete rotations. Q(x)=(D;+D,sirPx) "2 (6)

So far we have considered only deterministic quantities. . . . . .
However, all physical parameters are subject to random per- Th? solution of the f|r§t-order d|ﬁerentlal equati¢h)
turbations that, roughly speaking, may have internal or exgontains one constant which, together with the second con-
ternal origin. The formefadditive noisg¢ will influence the St;?m W, 'i found frﬁm th? nqrmahzaﬂp_n condition,
parametera in Eq. (1), whereas the lattetmultiplicative J —=F(X)dx=1, and the periodicity conditionP(— )

noise is responsible for fluctuations in, = ). Calculations yield

a=ag+\2D,&(t):  b=Dby+2D,75(1). 3) =2 1— r{—ﬂ [ 2T ) E(x.0
0 1 o 0 2 (X)y=2m ex \/m fo (X)F(x,0)
Here, we assume for simplicity th@{(t) and »(t) are the ) .
Gaussian white nois€£(t) &(t1))={n(t) n(ty))=(t—ty). xrem
The influence of an additive i\oisﬁt) alonel[ 7(t)=0] %)n X jx Qy)F(Oydy|dx| . )

1063-651X/2001/68)/0111044)/$20.00 65011104-1 ©2001 The American Physical Society



M. GITTERMAN AND V. BERDICHEVSKY

1

Flux
o
431

0 0.5
Driving Force

FIG. 1. Flux(x) as a function of the driving force, for b,
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noise produces higher flux for smaly and smaller flux for
largera,.

It is convenient for the following analysis to consider
separately two limiting cases of weakb{—0) and strong
(D,—0°) additive noise, combining analytical and numerical
approaches.

Let us start with the case of weak noig®,—0 andD,

—0, where both caseBP,>D; and D,<D; are possible.
One can use the method of steepest descent to calculate the
integrals in Eq(7), which gives

()=

1 e;{ 2’7Ta0

—exd — 0
VD1(D;1+Dy)
1 .

y VIT(Zmax) T(Zmin)|

0 (Zimad N Zmi) eXszmaxT(Z)dz’

9

=1. Solid and dotted lines describe a single multiplicative nOiSB\Nhereme andzmax are two neighboring Zeros d’f(z) with
and a single additive noise, respectively. The upper and lower(z >0 T(z.,)<O.

curves are related to noises of strengths 2 and 0.1, respectively.

where

[
F(k,l)=ex;{ — fkT(z)dz ;

T(2)=

We initially performed numerical calculations of E)
in order to compare the importance of additive and multipli-

D,+D,sirfz’

It is easily found from Eq.(8) that Sin€maxmin
=ay/bg, COSZy 4= /by, COSZyin=—w/by, and, for by>a,,
Eqg. (9) reduces to

()= \b§—aj

;{ 2’7Ta.0
l—exp — —————
VD1(D1+Dy)

Zmin
X exp T(z)dz (10

Zmax

cative noise. In Fig. 1, we present the flux as a function of a Calculating the integral in Eq10) presents no problem,
driving force ag, for bg=1, in the presence of only one of but instead of writing down this cumbersome expression, we
noises equal to 0.5 and 2.0. From this figure one can see thptesent the results for the two limiting cases of lafgmall

for a small value of noisel§ =0.5), additive noise leads to a multiplicative noise compared with additive noigg;=D

higher flux than multiplicative noise, whereas for larger

For D,<D,, i.e., for the weak additive and no multipli-

noise O =2), the opposite result occurs. The transient re-cative noise, one obtains the well-known rega2,1]
gime takes place for intermediate value of noise. As it is

shown in Fig. 2, for the noisB =1 (of order ofbg), additive
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p[ 2m
ex

T8

(X)p ,<D,=\b aoex;{ D,
23, . 71a0
— —sin t—|,
D, bo

(11)

while for weak noise, wittD,>D1,

bo_ \/ﬁ) by /D,

. —a
X =./b2—aZex
( >D2>D1 0~ Qo F{ bo + /_2_2b0_a0

vDiD,

(12)

Comparing Egs(11) and(12) one concludes that additional
multiplicative noise is able essentially to increase the flux in
a system subject to only weak additive noise. These analyti-
cal results are supported by numerical analysis of(Eg.as
shown in Fig. 3, foD;=0.1 and differenD,, which shows

FIG. 2. The same as in Fig. 1 in the presence of a single noise dhe strong influence of multiplicative noise on the flux for

strength 1.

small driving force.
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FIG. 3. Flux(x) as a function of the driving force, for b,
=1 andD,=0.1 for different values oD,.
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FIG. 5. Flux(x) as a function of the driving forca, for b,
=1 andD,=1 for different values oD, .

and D), which again demonstrates an increase of the flux

Turning now to the opposite limiting case of strong addi- 4 ;e to the multiplicative noise.

tive noise,D;—o, one can substantially simplify Eq7),
reducing it to the following form:

D2 - 1/2 -
+D—1> [fo O(z)dz

In Fig. 4, we show the dimensionless flué&QDl_,x)/aO
as a function ofD,/D; for large additive noisé,. This
graph starts from((x)Dl_,m)/a0=1 for D,=0 (large addi-
tive noise suppresses the sin term in Eq, yielding Ohm’s
law for the Josephson junctigii2]), increasing markedly
with an increase in the strength of multiplicative noise.

Figure 5 shows the results of numerical analysis of (2j.
for comparable values of all parameters involvdx (D4,

g -2
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FIG. 4. Dimensionless fluxx)/a, as a function of the ratio of
noise strength®, /D for strong additive nois®, (by=1).

One concludes, therefore, that in the presence of one

source of noise, the fluéx) is larger for additive noise if the
strength of noise is small, while for strong noise, multiplica-
tive noise is more effectivéFig. 1). The transient regime
between these two cases occurs for intermediate noise
strength of order ob, (the critical current for Josephson
junction), where additive noise is more effective for small
driving forces and less effective than multiplicative noise for
large driving forcegFig. 2). In fact, for small noise strength
(say, D=0.1) and smallay, multiplicative noise produces
flux larger by many order of magnitude than the flux caused
by additive noise. It is not surprising that multiplicative noise
becomes important wheb is of order of the potential bar-
rier heightb,.

If both sources of noise are present, then the flux is es-
sentially increased in the presence of strong multiplicative
noise for weakFig. 3), strong(Fig. 4) and intermediatéFig.

5) strength of additive noise, especially for small bias force
ao. The latter result has a simple intuitive explanation. In-
deed, the horizontal periodic potentiay,=0) with a strong

fluctuations in the width of this potential, has no preferential

direction, and, therefore, no flugx)=0 ( We leave aside the
ratchet effect that requires spatially anisotropic periodic po-
tential or/and nonequilibrium fluctuationdt is enough to
have a small slope of a periodic potentiah#0, for the

occurrence of the fluxx).

The importance of multiplicative noise for the stationary
states has long been knoWh3,14. The influence of both
additive and multiplicative noises on the escape time from a
double-well potential was studied ji5,16. The analysis of
the stationary probability distribution function for a periodic
potential and dichotomous multiplicative noise has been per-
formed by Parket al. [17]. In 1997, we studied11] the
influence of both additive and multiplicative noises on the
voltage-current characteristics of Josephson junctions. The
similar effect for the different problem of an output-input
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relation for the motion in a double-well potential has beenparative influence of two sources of noise, and the essential

studied intensively by two groups of researchers, who calledensitivity of a flux to strong multiplicative noise for small

this effect “noise-induced hypersensitivity18] and “am-  bias in some of the systenj$—9] described by Eq(1). It

plification of weak signals via on-off intermittency’19]. seems plausible that the described effect may have practical
We are looking for experimental verification of the com- application for optimizing the flux in such systems.
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